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Abstract By using results of highly accurate computations of the total energies of a
large number of few-electron atoms we construct a few interpolation formulas which
can be used to approximate the total energies of bound atomic states. In our procedure
the total energies of atomic states E are represented as a function of the electric
charge of atomic nucleus Q and the total number of bound electrons Ne. Some general
properties of the E(Q, Ne) function are investigated. The knowledge of the E(Q, Ne)

function allows one to determine the total (and binding) energies of these states in
arbitrary atoms and ions with different Q and Ne.

Keywords Interpolation · Atomic term · Bound state

In this short communication we discuss accurate and relatively simple interpolation
formulas which can be used to predict the total energies and other bound state proper-
ties in various atoms and ions. Recently, a very substantial progress has been achieved
in highly accurate computations of the bound states in few-electron atoms and ions.
Based on the results of such calculations we can construct a number of different inter-
polation formulas for the total and binding energies of atomic few-electron systems, i.e.
for atomic systems with different nuclear charges Q and different number of bounded
electrons Ne. Analogous formulas can be constructed for other bound state properties,
including inter-particle delta-functions, various single-, two- and three-particles prop-
erties and properties which are determined by the expectation values of some singular
operators. In this study we shall not discuss interpolation formulas for arbitrary bound
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state properties. Furthermore, below we restrict ourselves to the consideration of the
total energies of the bound states in the non-relativistic atoms and ions. First, note that
the overall accuracy of the Q−1 expansions constructed for the ground states in the
two-, three- and four-electron atomic systems can be considered as outstanding. In this
study we want to make the following step and develop (and later apply) the ‘universal
formula’ proposed in [1], which allows one to predict the total energies of arbitrary
atomic systems with the known values of Q and Ne to very high numerical accuracy
and without actual atomic calculations. In other words, we need to construct the uni-
versal function E(Q, Ne) of the two (integer) arguments and investigate its properties.

At the first step of our analysis we need to determine the total energies E and
non-relativistic wave functions as the solutions of the Schrödinger equation [2] for the
bound states H� = E�, where E < 0 and H is the non-relativistic Hamiltonian of
the Ne-electron ion/atom

H = − h̄2
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, i = 1, 2, . . . , Ne and the notation n stands for the atomic

nucleus. In Eq. (1) the notation h̄ designates for the reduced Planck constant, i.e.
h̄ = h

2π , and e is the elementary electric charge. In this study all masses of the
atomic nuclei are assumed to be infinite. In general, it is very convenient to perform
all bound state calculations in atomic units where h̄ = 1,me = 1 and e = 1. In
these units the velocity of light in vacuum c numerically coincides with the inverse
value of the dimensionless fine structure constant, i.e. c = α−1, where α = e2

h̄c ≈
7.2973525698× 10−3. In atomic units the Hamiltonian, Eq. (1), is written in the form
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As follows from Eq. (2) the Hamiltonian H is a continuous operator-function of the
nuclear charge Q, or in other words, the nuclear charge Q is the continuous parameter
(or control parameter) of this Hamiltonian. By applying the Poincare theorem one
finds that all eigenvalues of the Hamiltonian H , Eq. (2), and all its eigenfunctions
are the continuous functions of Q. In applications to real atoms the nuclear charge Q
expressed in atomic units is always an integer number. Let us assume that we know the
actual atomic wave function � (or | �〉). Then we can reduce Eq. (1) by the following
equation for the three expectation values

E = 〈H〉 = −1

2
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where E is the total energy of the bound state, while
〈∇2

1
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,
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〉
are the expectationvalues of the electronkinetic energy, electron–nucleus (attrac-
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tive) potential energy and electron–electron repulsion, respectively. In derivation of
Eq. (3) the fact that all atomic electrons identical particles. As it can be seen from
Eq. (3) the total energy E is a function of the two parameters Q and Ne which are
both integer. Formally, to determine the exact (or analytical) form of the E(Q, Ne)

function we need to determine three expectation values mentioned in Eq. (3), i.e. the〈∇2
1

〉 = − 〈
p21

〉
,
〈
r−1
1n

〉
and

〈
r−1
12

〉
. In reality, for Coulomb systems one also finds an

additional condition which is widely known as the ‘virial theorem’. The virial is writ-
ten in the form 2 〈T 〉 = − 〈V 〉, where T is the operator of kinetic energy, while V is
the operator of the potential energy. The explicit forms of these operators are:

T = −1
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Note that the virial theorem can be written in one of the following forms: E =
−〈T 〉 , 1

2 〈V 〉 = E , etc. In general, by applying the virial theorem we can reduce
the total number of ‘unknown’ expectation values in the right-hand side of Eq. (3)

from three to two. For instance, the expression of the total energy E in terms of
〈

1
r1n

〉

and
〈
1
r12

〉
expectation values is
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As follows from Eq. (5) to obtain the explicit formula for the E(Q, Ne) function we

need to derive analogous formulas for the
〈
1
ren

〉
and

〈
1
ree

〉
expectation values. Briefly,

this means that these expectation values must be expressed as explicit functions of Q
and Ne. In reality, it is not possible to derive any closed analytical expression for the〈
1
ren

〉
and/or

〈
1
ree

〉
expectation values written as a function of Q and Ne. An obvious

exclusion is the Thomas–Fermi method.1 By using other methods which are more
accurate than Thomas–Fermi method it is impossible to derive the closed analytical

formulas for the
〈
1
ren

〉
and

〈
1
ree

〉
expectation values. This means that it is impossible to

obtain any closed analytical formula for the E(Q, Ne) function. However, the ‘atomic
function’ E(Q, Ne) can be approximated to very good accuracy by using results of
highly accurate numerical calculations for a large number of a few-electron atoms/ions.
Formally, if the total number of bounded electrons Ne is fixed, then we are dealing
with the so-called Q−1 expansions for the total energies of a number of atoms/ions
with different Q. For two-electron atoms and ions such series are well known since
the middle of 1930s and first papers by Hylleraas for two-electron ions (see e.g., [3–5]
and references therein). Analogous series for three- and four-electron atomic systems

1 This problem has a unique solution for the Tomas–Fermi method, where one finds that T = − 3
7Uen and

Uee = − 1
7Uen . Thismeans that the total energy is E = 3

7Uen , where T,Uen ,Uee are the expectation values
of the (electron) kinetic energy, electron–nucleus attraction and electron–electron repulsion, respectively.
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were not used in applications, since they provided a very modest overall accuracy
which was not sufficient for accurate evaluations.

At this moment the situation with accurate numerical calculations of the three-
and four-electron atoms and ions has changed. Currently, we have a large number
of highly accurate results for the two-electron ions and quite a few different sets of
accurate numerical results obtained for three- and four-electron atoms and ions (see
e.g., [6,7] and references therein). These results allow us to construct some accurate
Q−1 expansions which also describe the total energies of the three- and four-electron
atomic systems. Based on these formulas for the Q−1 expansions for two-, three-
and four-electron atoms and ions we can try to guess the explicit formulas for an
universal function E(Q, Ne), where Ne is the total number of bounded electrons. This
problem has a fundamental value for whole atomic physics. Indeed, if we know the
E(Q, Ne) function, then we can predict the total energy of an arbitrary atom/ion with
the given Q and Ne to high accuracy which is sufficient for many actual problems
known from stellar astrophysics, physics of high-temperature plasmas, etc. In reality,
accurate predictions of the total and binding energies of atoms/ions with different Q
and Ne was an ultimate goal for many generations of atomic physicists. In this study
we show that currently we are very close to fulfill this goal.

Accurate non-relativistic energies E of a large number of the ground states in the
two-, three- and four-electron atoms/ions can be found in Table 1. All total energies are
given in Table 1 in atomic units. The total energies of the two-electron (or helium-like)
atoms and ions from Table 1 have been determined to very high accuracy with the use
of our computational procedure which allows one to perform calculations with 3500
exponential basis functions in the wave functions. All basis functions are written in the
relative coordinates r32, r31 and r21. For three-electron (or lithium-like) ions (and Li
atom) such energies have been taken from [6], while for four-electron atoms/ions they
were chosen from [7]. The overall accuracy of the ground state energies in three- and
four-electron atomic systems is still significantly lower than the analogous accuracy
for two-electron atoms and ions (see Table 1). Note also that the Li− ion, i.e. atomic
system with Q = 3 and Ne = 4, is bound, i.e. its ground 21S-state is stable, but our
current variational results for this system (e.g., E = −7.5007185a.u.) are not highly
accurate. This is the reason why we exclude this ion from Table 1. By using the total
energies of all atoms/ions mentioned in Table 1 (with the same value of Ne) one can
determine some numerical coefficients in the Q−1 expansion

E(Q) = a2Q
2 + a1Q + a0 + b1Q

−1 + b1Q
−1 + b2Q

−2 + b3Q
−3 + · · · (6)

where a2, a1, a0 are the coefficients of the regular part of the Laurent expansion (or
series), while b1, b2, . . . are the coefficients of the principal part of the Laurent series
E(Q), Eq. (6). Note that the Q−1-expansion (or Q−1-series), Eq. (6), is a typical
‘asymptotic expansion’. Briefly, this means that after some n ≥ nmax all coefficients
bn in Eq. (6) rapidly increase with n. Contributions of the corresponding terms also
rapidly increase with n and the total sum computed with the use of Eq. (6), which
includes such ‘growing terms’, has nothing to do with the original problem. Briefly,
this means that in such cases the Q−1 expansion cannot be used to approximate the
actual total energies. To avoid this problemwe need to restrict the total number of terms
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Table 1 The total non-relativistic energies E of the different atoms/ions in their ground states in atomic
units

Q Ne = 2 Ne = 3 Ne = 4

1 −0.5277510165443771965925 – –

2 −2.90372437703411959831115924519440 – –

3 −7.27991341266930596491875 −7.4780603236503 –

4 −13.65556623842358670208051 −14.3247631764654 −14.667356407951

5 −22.03097158024278154165469 −23.424605720957 −24.348884381902

6 −32.40624660189853031055685 −34.775511275626 −36.534852285202

7 −44.781445148772704645183 −48.376898319137 −51.222712616143

8 −59.156595122757925558542 −64.228542082701 −68.411541657589

9 −75.531712363959491104856 −82.330338097298 −88.100927676354

10 −93.906806515037549421417 −102.682231482398 −110.290661070069

11 −114.28188377607272189582 −125.2841907536473 −134.980624604257

12 −136.65694831264692990427 −150.1361966044594 −162.170747906692

13 −161.03200302605835987252 −177.238236559961 −191.860986338262

14 −187.40704999866292631487 −206.5903022122780 −224.051310298012

15 −215.78209076353716023462 −238.1923876941461 −258.741699427160

16 −246.15712647425473932009 −272.0444887900725 −295.932139288646

17 −278.53215801540009570337 −308.1466023952556 −335.622619375075

18 −312.90718607661114879880 −346.4987261736714 −377.813131866050

19 −349.28221120345316700447 −387.1008583345610 −422.503670826658

20 −387.65723383315855621790 −429.9529974827626 −469.694231675265

21 −428.03225432023469116264 – −519.384810821074

22 −470.40727295513838395930 – −571.575405411671

23 −514.78228997811177388135 – −626.266013153662

24 −561.15730558958127234352 – −683.456632182920

25 −609.53231995807574620568 – −743.147260969064

26 −659.90733322632780520901 – −805.337898245040

27 −712.28234551602655145614 – −870.028542951686

28 −766.65735693155709991040 – −937.219194199135

30 – – −1079.100513407098

36 – – −1564.744568198454

All nuclear masses are infinite. Q is the nuclear electric charge and Ne is the total number of bounded
electrons

in Eq. (6). For instance, if we use N = 18 values of the total energies E(Q) (computed
for eighteen different values of Q), then the total number of terms in Eq. (6) can be
8, or 10, but not 16, or 18. An universal criterion can be formulated in the following
form: overall contribution to the total sum, Eq. (6), from the last term must be smaller
(and even much smaller) than analogous contribution from the pre-last term.

First ten coefficients of the Q−1 expansion, Eq. (6), determined from the results
of highly accurate numerical calculations of few-electron atoms and ions mentioned
in Table 1 can be found in Table 2. These coefficients can be used in applications
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Table 2 Coefficients
a(Ne)
2 , a(Ne)

1 , a(Ne)
0 and

b(Ne)
1 , b(Ne)

2 , . . . , b(Ne)
7 in the

ten-term expansion of the
E(Q, Ne)-function [see
Eq. (12)]

coefficients Ne = 2 Ne = 3 Ne = 4

a(Ne)
2 −1.0000000000 −1.1249999945 −1.2499999978

a(Ne)
1 0.6249999961 1.0228047058 1.5592739061

a(Ne)
0 −0.1576662873 −0.4081459572 −0.8771019520

b(Ne)
1 0.0086962674 −0.0170061678 −0.0429178704

b(Ne)
2 −0.0008567981 −0.0341594959 −0.1694257553

b(Ne)
3 −0.0012640360 −0.1084597316 −0.3362058744

b(Ne)
4 0.0003957668 0.2941494433 0.6932000874

b(Ne)
5 −0.0030653579 −1.4458330710 −5.7572871897

b(Ne)
6 0.0037323637 2.9184336113 14.3319856750

b(Ne)
7 −0.0027229312 −3.3508481226 −22.3281869042

of the Q−1 expansion, Eq. (6), to other two-, three- and four-electron atoms and
ions. The overall accuracy of the Q−1 expansion, Eq. (6), for the total energies of
the ground states in these atoms and ions is outstanding and can be evaluated as
1×10−9−5×10−12 a.u. of the total energies. In general, the Q−1 expansion, Eq. (6),
can be used in applications to different iso-electron atomic systems. However, due to
numerous problems in accurate computations of the three-, four- and many-electron
atoms and ions themost successful applications of theQ−1 expansion are still restricted
to the two-electron (or helium-like) atoms and ions. It should be mentioned that sim-
ilar Q−1 expansions can be used for other bound state properties, e.g., to predict
interparticle distances, expectation values of some delta-functions, etc. As mentioned
above in this study we restrict ourselves to the total energies only and (brief discus-
sion of the interpolation formulas for other bound state properties can be found e.g.,
in [1]).

Based on the results from Tables 1 and 2 we can make the new step which must
lead to better understanding of the structure of bound state spectra in atoms and ions.
Instead of dealing with many different E(Q) functions constructed for each series
of iso-electron atomic systems, i.e. atoms/ions with the same Ne, we introduce a
‘universal function’ E(Q, Ne) which depends upon two integer numbers: Q (nuclear
electric charge) and Ne (total number of bound electrons). If Ne is fixed, e.g., Ne = 2,
then the corresponding function E(Q, Ne = 2) = E(Q, 2) must coincide with the
function E(Q) known for the two-electron atomic systems. There are few possible
approaches which can be used to determine the universal E(Q, Ne) function. In this
study we apply the so-called direct approach which is based on the results presented
in Table 2. In fact, we shall assume below that coefficients presented in all columns
of Table 2 correspond to one ‘universal’ function E(Q, Ne). Numerical differences in
these coefficients can only be related with the variations in Ne. For instance, consider
the first coefficients a2 from Table 2. The exact value of these coefficients are −1,− 9

8
and − 5

4 for Ne =2, 3, and 4, respectively. Therefore, the following general formula
can be written in the form
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a2 = −
(
8 + Ne − 2

8

)
= −

(
6 + Ne

8

)
(7)

where Ne is the total number of bounded electrons in the atom/ion. As follows from
Table 2 the analogous expression for the second coefficient canwritten in the following
form

a1 = 5

8
+ a(1)

1 (Ne − 2) + a(2)
1 (Ne − 2)2 (8)

where a(1)
1 and a(2)

1 are the two unknown coefficients which are determined with the
use of numerical values for this coefficient from the second and third columns of
Table 2. The formula, Eq. (8), can be re-written into a slightly different form

a(Ne)
1 = 5

8
+

[
a(3)
1 − 5

8

]
(Ne − 2) +

[
a(4)
1 − 2a(3)

1 + 5

8

]
(Ne − 2)(Ne − 3)

2
(9)

where a(3)
1 and a(4)

1 are the coefficients from Table 1 for the three- and four-electron
atomic system, respectively. The unknownvalue of the a1 coefficient for atomic system
with Ne-electrons is designated in the left-hand side of Eq. (9) as a

(Ne)
1 . The formula,

Eq. (9), can be generalized to more complex cases, e.g.,

a(Ne)
0 = a(2)

0 +
[
a(3)
0 − a(2)

0

]
(Ne − 2) +

[
a(4)
0 − 2a(3)

0 + a(2)
0

] (Ne − 2)(Ne − 3)

2
(10)

where a(Ne)
0 is the a0 coefficient from Eq. (6) defined for atomic systems with Ne

bound electrons. Analogously, for bk coefficients from Eq. (6) one finds

b(Ne)
k = b(2)

k +
[
b(3)
k − b(2)

k

]
(Ne−2)+

[
b(4)
k − 2b(3)

k + b(2)
k

] (Ne − 2)(Ne − 3)

2
(11)

where notation a(Ne)
k stands for the bk coefficients (k = 1, 2, 3, . . .) from Eq. (6)

defined for atomic systems with Ne bound electrons, where Ne = 2, 3, 4, . . .. This
expression is, in fact, the Taylor–Maclaurin expansion for the b(Ne)

k coefficients upon
the total number of bound electrons Ne. Note that the formulas Eqs. (7)–(11) for the
coefficient a2 − a0 and bk (k = 1, 2, . . .) are essentially exact upon Ne for all two-,
three- and four-atoms/ions presented in Table 1. This means that the total energies
of these ions are reproduced with the same accuracy which is provided by their Q−1

expansion.
As follows from Eq. (7) the coefficient a2 is the ratio of two small integer numbers,

and numerator of this fraction is a linear function of Ne. This follows from the fact that
the main contribution to the total energy of any atom/ion comes from the NeQ2-term
which represents the leading term in the electron-nucleus attraction. In atomic units
this term equals to an integer, or semi-integer number (for an arbitrary atom/ion). The
coefficient a1 for two-electron atomic systems is also a simple fraction, e.g., 5

8 for
the ground states. The same conclusion is true for other bound states, e.g., for the
23S-triplet states, in the two-electron atoms/ions [8].
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In general, the analysis of the E(Q, Ne) function(s) is very similar to operations
with the Weizäcker mass formula in nuclear physics. Such a similarity follows from
the fact that in both cases we are dealing with the finite Fermi systems [9]. Note that
atoms and ions were considered as the finite Fermi systems in atomic physics since
first papers published in earlier 1960s [10,11] (see also [12] and references therein).
More recent references can be found, e.g., in [13]. This general theory allows one to
obtain the asymptotic form of the E(Q, Ne) function at very large Q and Ne [12]. A
few other advantages of that theory include the correct theoretical expressions for the
a0 and a1 coefficients [see Eqs. (7)–(8)] which either coincide with ours (see Table 2),
or very close to them. The coefficients a2, b1, b2, . . . predicted in the general theory are
known only approximately, even in the case of the ground (bound) atomic states. For
excited atomic states the accuracy of predictions of this theory is substantially lower.
In many cases applications of the general theory to the excited atomic states [12]
lead to very inaccurate predictions of ionization potentials and other properties. Such
a situation with excited states lead to a conclusion that applications of the general
theory to the ground states in atomic systems only. However, in this case we have
to face the following crucial question: why do we need to perform dozens of highly
accurate, atomic computations for construction of the accurate interpolation formula
for the total energies, if in modern atomic physics highly accurate computations of
any ground state in arbitrary atom/ion are significantly faster? It is clear that if we
cannot generalize our interpolation formulas to the excited atomic states, then chances
of the ‘general theory’ [10–12] to survive in the future are very low.

Our approach based on the use of highly accurate computational data for differ-
ent atoms/ions allows one to reconstruct the E(Q, Ne) function can be applied, in
principle to any atomic state, including excited states. As is well known from atomic
spectroscopy, the bound state spectrum of any multi-electron atom/ion is represented
as a set of different terms, where each term has its unique quantum numbers of angular
momentum L and total electron spin S. For our analysis this means that the function
E(Q, Ne) (total energy) defined above must be labeled by the two indexes L and
S, which are good (= conserving) quantum numbers for an isolated atom/ion with
Ne bound electrons. These two quantum numbers are the labels of the corresponding
atomic term. The bound state spectrum of any atom is represented as a combination
of different LS-terms. An ultimate goal is to approximate the total (non-relativistic)
energies of all bound states from all possible terms which can be found in real atoms
and ions. In the ‘general theory’ [10,11] this problem is extremely complex, since
often the atomic LS-term does not exist in atoms/ions with fewer electrons. Formally,
this means that we need to construct the Q−1 expansions for each different atomic
LS-term.

In part, such a strategy already works for the ground atomic states. Indeed, the
ground states in different atoms correspond to the different terms, e.g., the ground
state in the B-atom (five bound electrons) is the 21P-state, analogous state in the
carbon atom is the 22P-state. It is clear that by including future highly results for
atoms/ions with larger number of electrons we can reach the ground states of the
Fe atom (5D4-term), Co atom (4D 9

2
-term), etc. However, if it is possible to connect

all ground atomic states by one interpolation formula, then we can do the same for
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the excited atomic states too. Let us describe our current vision of this two-stage
procedure. At the first stage the approach is based on the formulas, Eqs. (7), (9), (10)
and (11) allows one to determine other unknown coefficients a0, a1, a2, b1, b2, . . ..
The arising formulas are simple and convenient in applications to atoms and ions. The
known coefficients a0, a1, a2, b1, b2, . . . are used in the ‘usual’ Q−1-expansion

E(Q, Ne) = a2(Ne)Q
2 + a1(Ne)Q + a0(Ne) + b1(Ne)Q

−1 + b1(Ne)Q
−1

+ b2(Ne)Q
−2 + b3(Ne)Q

−3 + · · · (12)

where now all coefficients are the functions of the total number of bound electrons
Ne. In this study all coefficients in Eq. (12) are constructed as polynomial functions
of Ne. The Q−1-expansion, Eq. (12), provides high numerical accuracy for the total
energies of all two-, three- and four-electron atomic systems presented in Table 1. Very
likely, that the analytical expression for each of the bi (Ne) coefficients (i = 1, 2, . . .)
in Eq. (12) is more complicated than a simple polynomial in Ne. It is clear that
such an expansion must also include the negative powers of Ne. In reality, we can
investigate the E(Q, Ne) function in detail when we can obtain highly accurate results
for five- and six-electron atoms and ions. When highly accurate computations of the
five- and six-electron atoms will be completed, then we can substantially improve
our current knowledge of the E(Q, Ne) function(s). Moreover, we can derive some
compact and accurate formulas for numerical approximations of these functions for
different bound atomic states. This is an answer to an old question about possibility
to find an analytical formula for the total non-relativistic energies of bound states in
atomic system which contains Ne bound electrons moving in the field of infinitely
heavy nucleus with the electric charge Qe. In this study to approximate the E(Q, Ne)

function we have restricted to the ten-term formula for the Q−1 expansion, Eq. (6).
In part, such a restriction is related with relatively low accuracy of the computational
energies obtained for the three- and four-electron atoms/ions.

At the second stage of the procedure we need to find relations between coefficients
of these series, define these coefficients as the functions of Ne, etc. Asmentioned above
some bound LS-state (or LS-term) may not exist for atoms/ions with fewer electrons.
Therefore, we need to solve the problem of genealogical relation between terms (or
bound sates) in atoms/ions with different number(s) of bound electrons Ne. To explain
this problem let us assume that we have determined known function ELS(Q, Ne) (total
energy) for atoms/ions with the same number bound electrons Ne (Q is varied). Now,
suppose that the total number of bound electrons increases by one, i.e. Ne → Ne + 1.
Now, we have the new term L ′S′ and the new function EL ′S′(Q, Ne+1) (total energy).
We need to predict possible numerical values of L ′ and S′ quantum numbers. As it
follows from the fundamental principles of atomic theory for the new spin quantum
number we have S′ = S ± 1

2 , if S 	= 0, and S′ = S + 1
2 , if S = 0. To predict

the new value of L ′ we have to know the angular momentum � of the additional
electron. If we know this value, then one finds that all possible L ′ values are located
between the two following limits | L − � | (lower limit) and L + � (upper limit), i.e.
| L − � |≤ L ′ ≤ L + �. If these conditions for the L ′ and S′ are obeyed, then the total
energies ELS(Q, Ne) and EL ′S′(Q, Ne + 1) can be used in one series.
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As follows from the results of our study the function E(Q, Ne) can be constructed
for all bound states in multi-electron atomic systems, if (and only if) their terms are
directly connected by the ‘selection’ rule mentioned above. For instance, in this study
we discuss the total energies of two-, three- and four-electron atoms/ions which have
their ground 11S-, 22S- and 21S-states, respectively. These bound states have dif-
ferent multiplicities, i.e. they are singlets and doublets states. Suppose we want to
include in our analysis five-electron atoms/ions (B-like ions) for which the ground
state is the 22P-state. The ‘selection rules’ mentioned above works in this case.
Therefore, we can construct the E(Q, Ne) function for the 11S-, 22S-, 21S- and 22P-
states in the two-, three-, four- and five-electron atoms/ions, respectively. However,
if we want to evaluate, e.g., the total energies of the 34D-states in the five-electron
ions, then we have to use a slightly different consequence of bound states the two-,
three- and four-electron atoms/ions, respectively. A natural choice in this case is to
consider the bound 11S-, 22S- and 23P-states in the two-, three- and four-electron
atoms/ions, respectively. The total energies determined for the bound 34D-states in
the five-electron atoms/ions perfectly complete the data (total energies) computed for
the bound 11S-, 22S- and 23P-states in the two-, three- and four-electron atoms/ions.
On the other hand, it is clear that our total energies from the third column of Table 1
(total energies of the 21S-states in the four-electron atoms/ions) are useless in this
case. In other words, these energies cannot be used to predict the total energies
of the bound 34D-states in five-electron atoms/ions. Formally, this means that to
construct highly accurate interpolation formula for the total energies of the bound
34D-states in the five-electron atoms and ions one needs to perform a number of
separate, highly accurate computations of the bound 23P-states in the four-electron
atomic systems. In general, the total energies of any bound state in multi-electron
atomic system can be predicted to relatively high accuracy, if we know a num-
ber of total energies of bound states in atomic systems with fewer electrons. Such
bound states in atomic systems with fewer electrons correspond to the different LS-
terms. However, all these bound states (or terms) must be related to each other by
the selection rules mentioned above. An additional problem follows form the fact
that some of the atomic terms can be connected by using different atomic terms in
the systems with fewer bounded electrons. It is clear that the procedure must be
self-correlated. This means that we must have some additional relations between the
ELS(Q, Ne) and EL ′S′(Q, N ′

e) functions constructed for different atomic terms and
for atoms/ions which contain different number(s) of bound electrons. This interest-
ing question cannot be answered at the current level of theoretical and computational
development.

Appendix

The formulas Eqs. (7), (9), (10) and (11) for the coefficients a2, a1, a0 and b1, b2, . . .
from the main text can be re-written in a number of different forms which are often
more convenient in applications. In this Appendix we present the explicit formulas
for the coefficients a2, a1, a0 and b1, b2, . . . for five- and six-electron atomic systems
(i.e. toms and ions). In all these cases the formula for the a2 coefficient coincides with
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Eq. (7) (here we do not want to repeat it). The formulas for other coefficients from
Eq. (12) take the following forms. For Ne = 5 one finds:

a(Ne=5)
1 = 5

8
+

[
a(3)
1 − 5

8

]
(Ne − 2) +

[
a(4)
1 − 2a(3)

1 + 5

8

]
(Ne − 2)(Ne − 3)

2

+
[
a(5)
1 − 3a(4)

1 + 3a(3)
1 − 5

8

]
(Ne − 2)(Ne − 3)(Ne − 4)

6
(13)

a(Ne=5)
0 = a(2)

0 +
[
a(3)
0 − a(2)

0

]
(Ne − 2) +

[
a(4)
0 − 2a(3)

0 + a(2)
0

] (Ne − 2)(Ne − 3)

2

+
[
a(5)
2 − 3a(4)

2 + 3a(3)
2 − a(2)

2

] (Ne − 2)(Ne − 3)(Ne − 4)

6
(14)

and

b(Ne=5)
k = b(2)

k +
[
b(3)
k − b(2)

k

]
(Ne − 2) +

[
b(4)
k − 2b(3)

k + b(2)
k

] (Ne − 2)(Ne − 3)

2

+
[
b(5)
k − 3b(4)

k + 3b(3)
k − b(2)

k

] (Ne − 2)(Ne − 3)(Ne − 4)

6
(15)

where Ne = 5 in the right-hand sides of these equations.
Analogous formulas for the Ne = 6 are

a(Ne=6)
1 = 5

8
+

[
a(3)
1 − 5

8

]
(Ne − 2) +

[
a(4)
1 − 2a(3)

1 + 5

8

]
(Ne − 2)(Ne − 3)

2

+
[
a(5)
1 − 3a(4)

1 + 3a(3)
1 − 5

8

]
(Ne − 2)(Ne − 3)(Ne − 4)

6

+
[
a(6)
1 − 4a(5)

1 + 6a(4)
1 − 4a(3)

1 + 5

8

]
(Ne − 2)(Ne − 3)(Ne − 4)(Ne − 5)

24
(16)

a(Ne=6)
0 = a(2)

0 +
[
a(3)
0 − a(2)

0

]
(Ne − 2) +

[
a(4)
0 − 2a(3)

0 + a(2)
0

] (Ne − 2)(Ne − 3)

2

+
[
a(5)
2 − 3a(4)

2 + 3a(3)
2 − a(2)

2

] (Ne − 2)(Ne − 3)(Ne − 4)

6

+
[
a(6)
2 − 4a(5)

2 + 6a(4)
2 − 4a(3)

2 + a(2)
2

] (Ne − 2)(Ne − 3)(Ne − 4)(Ne − 5)

24
(17)

and

b(Ne=6)
k = b(2)

k +
[
b(3)
k − b(2)

k

]
(Ne − 2) +

[
b(4)
k − 2b(3)

k + b(2)
k

] (Ne − 2)(Ne − 3)

2

+
[
b(5)
k − 3b(4)

k + 3b(3)
k − b(2)

k

] (Ne − 2)(Ne − 3)(Ne − 4)

6

+
[
b(6)
k − 4b(5)

k + 6b(4)
k − 4b(3)

k + b(2)
k

] (Ne − 2)(Ne − 3)(Ne − 4)(Ne − 5)

24
(18)
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where in the right-hand sides of these equations we must put Ne = 6. Generalization
of these formulas to the cases when Ne ≥ 7 is straightforward and relatively simple.

As follows from these formulas the addition of one electron, i.e. Ne − 1 → Ne,
affects only the last term in each of these formulas, while all previous terms contains
coefficients known for atomic systems with Ne − 1 electrons. This allows one to
consider different atomic LS-terms for the bound states with different Ne (it is assumed
that the ‘selection rules’ mentioned in the main text are obeyed for these LS-terms).
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